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Experimental Setup for Study of Microdicharge Interaction Microdischarge Interaction Model

The two-dimensional spatial distribution of microdischarges in at- l Gas inlet (Air) Electron Cathode directed Discharge volume divided into CA cells Extended stochastic cellular automata (CA) used for Monte-
mospheric pressure dielectric-barrier discharges in air was stud- Carlo simulation of Microdischarge Interaction.
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